Архив метки: инсулин

Депонирование и мобилизация гликогена в печени

Инсулин и глюкагон передают сигнал в клетки через мембранные рецепторы, как это описано. Начальные события, вызываемые изменением концентрации глюкозы в крови, можно представить следующей таблицей (стрелки, направленные вверх, указывают на увеличение параметра, вниз — на уменьшение): Ключевую роль в регуляции синтеза и распада гликогена играют реакции фос-форилирования-дефосфорилирования гликогенсинтетазы и гликогенфосфорила-зы.

Депонирование и мобилизация гликогена в печени

При этом фосфорилирование изменяет активность этих ферментов противоположным образом — ингибирует синтазу и активирует фосфорилазу; дефосфори-лирование, наоборот, активирует синтазу и ингибирует фосфорилазу. Это обстоятельство и позволяет избежать образования растратного цикла.После завершения пищеварения инсулин-глюкагоновый индекс уменьшается (главным образом за счет снижения концентрации инсулина и в меньшей мере за счет увеличения концентрации глюкагона). Глюкагон передает сигнал в клетку через аденилатциклазную систему, следовательно, в клетке активируется протеинкиназа А . Протеинкиназа А фосфорилирует (и инактивирует) гликоген-синтетазу: синтез гликогена прекращается. Далее протеинкиназа А фосфорилиру-ет (и активирует) киназу гликогенфосфорилазы. Киназа фосфорилазы (активная форма), в свою очередь, фосфорилирует (активирует) фосфорилазу. Таким образом, синтез гликогена в клетке заторможен, но происходит его распад.

В абсорбтивном состоянии высокий инсулин-глюкагоновый индекс; инсулин активирует тирозинкиназу своего рецептора, и далее следует каскад реакций, в результате которого фосфорилируется и активируется печеночная протеинфосфатаза гранул гликогена 1 (ПфГр-1) (рис. 9.28). Затем ПфГр-1 дефос-форилирует (активирует) гликогенсинтетазу — становится возможным синтез гликогена. Кроме того, ПфГр-1 дефосфорилирует киназу гликогенфосфорилазы (инак-тивирует): в результате становится невозможным фосфорилирование (активация) гликогенфосфорилазы, и распад гликогена прекращается

Смена абсорбтивного и постабсорбтивного состояний

В постабсорбтивном состоянии концентрация глюкозы в крови равна примерно 5 ммоль/л (90 мг/дл). После приема пищи в результате всасывания глюкозы из кишечника ее концентрация в крови увеличивается (алиментарная гиперглюко-земия). Максимум концентрации — около 150 мг/дл — достигается примерно через час; еще примерно через 1,5 ч концентрация глюкозы возвращается к уровню постабсорбтивного состояния.

Регуляция смены абсорбтивного и постабсорбтивного состояний инсулином и глюкагоном

 

Синтез и секреция инсулина и глюкагона регулируются глюкозой, причем противоположным образом: при повышении концентрации глюкозы в крови секреция инсулина увеличивается, а глюкагона, наоборот, уменьшается. Таким образом, их концентрации в крови изменяются реципрокно: при пищеварении концентрация инсулина высокая, концентрация глюкагона низкая; в постабсорбтивном состоянии отношение обратное. Однако следует отметить, что амплитуда изменений концентрации инсулина гораздо больше, чем глюкагона: концентрация инсулина изменяется примерно в 7 раз, а глюкагона — в 1,5-2 раза. Противоположно также и действие этих гормонов на метаболизм: инсулин стимулирует процессы запасания веществ при пищеварении, а глюкагон — их мобилизацию в постабсорбтивном состоянии. Поэтому направление метаболических процессов зависит не столько от абсолютной концентрации гормонов, сколько от отношения их концентраций: [инсулин]/[глюкагон] (инсулин-глюкагоновый индекс).
Гликоген
как запасная форма глюкозы накапливается в клетках во время пищеварения и расходуется в промежутках между приемами пищи. Очевидно, при смене
этих периодов должны изменяться относительные скорости синтеза и распада гликогена. Кроме того, энергетические потребности организма изменяются при переходе от покоя к активности и наоборот, и соответственно должна регулироваться скорость расходования гликогена. Наконец, одновременное протекание и синтеза, и распада гликогена в одной и той же клетке привело бы к образованию порочного (растратного) цикла, единственным результатом которого было бы растрачивание АТФ. Следовательно, регуляторные механизмы должны быть такими, чтобы при включении одного процесса автоматически выключался бы другой.